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This Talk Is Based On

Robust Learning of Multi-index Models via Iterative Subspace
Approximation [DIKZ25]
I. Diakonikolas, G. Iakovidis, D. Kane, N. Zarifis

Algorithms and SQ Lower Bounds for Robustly Learning Real-valued
Multi-index Models [DIKR25]
I. Diakonikolas, G. Iakovidis, D. Kane, R. Lisheng
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Multi-Index Models

Definition (Multi-Index Models (MIMs))

A class of function F ⊆ {f : Rd → Y} is called a class of MIMs of
dimension K , if for every f ∈ F there exists a subspace W ⊆ Rd , of
dimension at most K such that f (x) = f (xW ).

Essentially each function depends on the projection onto a low
dimensional subspace W . Can be written as f (Wx).

We assume that K ≪ d .

We assume that the label space is finite, |Y| <∞.

Many well-studied function classes, such as neural networks,
multiclass linear classifiers, intersections of halfspaces are MIM
classes.
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Example MIMs

∏
i∈[K ]

1
(
w (i) · x + ti ≥ 0

)
argmax
i∈[K ]

(
w (i) · x + ti

)

Figure 1: Intersection of halfspaces and Linear Multiclass Classifiers
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Example MIMs

Figure 2: Homogeneous ReLU Network
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Setting

We will work in the agnostic label noise setting.

We observe samples (x , y), where x ∼ D and y equals f (x) except in
an OPT fraction of the samples.

Our goal is to find a function h such that Pr[y ̸= h(x)] is small.

However this is computationally hard!!
We need assumptions on the function f , the distribution D and a relaxed
error guarantee.
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Learning Goal

We will work in the agnostic label noise setting with distributional
assumptions.

Let D be a distribution over Rd × Y with Dx = N (0, I).

Let F be a MIM class, e.g., multiclass linear classifiers.

Goal:

Given N samples, (x (i), yi ) ∼ D for N = poly(d) · g(ϵ,K , δ).

Find an algorithm that runs in poly(N) time and returns a hypothesis
h comparable with the best-in-class

Pr
(x ,y)∼D

[h(x) ̸= y ] ≤ c(K ,OPT) + ϵ w.p. 1− δ ,

c is a small function of K and OPT = inff ∈F Pr(x ,y)∼D [f (x) ̸= y ].
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Main Result

Theorem (Informal Main Theorem)

There exists a dimension-efficient and robust algorithm for broad family of
well-behaved MIMs. Moreover, there is a SQ lower bound demonstrating
that this algorithm is optimal wrt the dependence on the dimension.
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Multiclass Linear Classification

Theorem (Agnostically Learning Ld ,K )

There exists an algorithm that draws N = d 2poly(K/ϵ) i.i.d. labeled
samples, runs in poly(N) time, and outputs a hypothesis h such that
w.h.p. errD0−1(h) ≤ O(OPT) + ϵ, where OPT = inff ∈Ld,K

errD0−1(f ).

Intuitively, the algorithm will approximately recover the subspace W using
moments, i.e., E[x1(y = i)]. Subsequently, it performs a brute-force
search within the recovered subspace.
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Finding a relevant direction

If there exists a label i such that Pr[i ̸= y ] ≤ COPT+ ϵ we could just
output i .

Otherwise, assuming that y is far from a constant, we have that each
class has a substantial first moment that the adversary can not hide.

No constant
approximation

non-trivial
E[x1(y = i)]W

Hence we have recovered one relevant direction!!
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Iterative Approximation
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Iterative Approximation
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Algorithm

1 Let L1 ← ∅
2 for t = 1 : T

3 Form a partition St of span(Lt) into cubes.

4 Set Lt+1 ← Lt ∪ {E[x1(y = i) | x ∈ S ]}S∈St
5 Form a partition ST of span(LT ) into cubes.

6 Return h a function that outputs the most frequent label for every
cube.

If T is a sufficiently large polynomial of K and 1/ϵ and you take enough
samples to approximate the expectations accurately, then h achieves
O(OPT) + ϵ error.
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Analysis

1 Let L1 ← ∅
2 for t = 1 : T

3 Form a partition St of span(Lt) into cubes.

4 Set Lt+1 ← Lt ∪ {E[x1(y = i) | x ∈ S ]}S∈St
5 Form a partition ST of span(LT ) into cubes.

6 Return h a function that outputs the most frequent label for every
cube.

To approximate E[x1(y = i)] accurately you need d/ϵ2 samples.

If you have ϵ as the width of the cube and dim(span(Lt)) = kt then
|St | = 1

ϵkt
. The number of cubes increases uncontrollably and so does

the complexity.

We need a filtering step!!
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Filtering

In fact we show that there is an ϵ fraction of cubes S with
wi · E[x1(y = j) | x ∈ S ] non-trivial for some i and j .

So there is an ϵ/K fraction of the cubes that have non-trivial
moments for the same wi .

Therefore the matrix

U =
∑
S ,i

uS ,iu
⊤
S ,i Pr[x ∈ S ] uS ,i = E[x1(y = i) | x ∈ S ]

has a big quadratic form for some wi .

Consequently we can find a vector close to w in U’s largest
eigenvalues.

This reduces the number of added vectors to poly(K/ϵ).
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General Algorithm?

What properties of the function class have we used?

1 Let L1 ← ∅
2 for t = 1 : T

3 Form a partition St of span(Lt) into cubes.

4 Set Lt+1 ← Lt ∪ Filter ({E[x1(y = i) | x ∈ S ]}S∈St )
1. Existence of correlating moments

5 Form a partition ST of span(LT ) into cubes.

6 Return h a function that outputs the most frequent label for every
cube.
2. Approximability of f from cubes
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Approximability from cubes
For real-valued functions Lipschitzness (∥∇f (x)∥ ≤ L) or more
generally bounded total variation (E[∥∇f (x)∥] ≤ L) suffices.

For discrete-valued functions under the gaussian the analogous
measure is the Gaussian Surface Area.

It is a measure of complexity of the decision boundary.
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Well-Behaved MIMs

Definition (Well-Behaved K -MIM)

Let f : Rd → Y be a K -MIM. We say that f is (m, ζ, τ, Γ)-well-behaved if
the following two conditions hold:

1 The Gaussian surface area of the decision region of f is at most Γ.

2 For every joint distribution (x , y) on Rd×Y satisfying

Pr
(x ,y)

[
f (x) ̸= y

]
≤ ζ

and for every linear subspace V ⊆ Rd , one of the following is true:
1 Pr

[
f (x) ̸= g(xV )

]
≤ τ.

2 With non-trivial probability over x ∈ V , conditioned on that point, the
resulting conditional distribution of x has a non-vanishing moment of
degree at most m.
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Main Theorem

Theorem (General Algorithm)

There exists an agnostic learning algorithm for (m, ζ, τ, Γ)-well-behaved

MIMs that, where ζ ≥ OPT+ ϵ that, uses N = dm2poly
(
ΓK |Y|/ϵ

)
samples,

runs in time poly(N), and outputs a hypothesis h satisfying, with
probability at least 1− δ,

errD0–1(h) ≤ τ + opt+ ϵ.

Furthermore we prove:

That N = dmpoly(Γ|Y|/ϵ)K suffices when y depends only on W .

A matching lower bound for classes of functions that do not satisfy
the well-behaved MIM condition.
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Real-Valued Concepts

Definition (Well-Behaved K -MIM)

Let f : Rd → R be a K -MIM. f is (m, ζ, τ, L,M)-well-behaved if the
following two conditions hold:

1 E[f 2(x)] ≤ M,Ex∼N (0,I )[∥∇f (x)∥2] ≤ L.

2 For every joint distribution (x , y) on Rd×Y satisfying

Pr
(x ,y)

[
(f (x)− y)2

]
≤ ζ

and for every linear subspace V ⊆ Rd , one of the following is true:
1 Pr

[
(f (x)− g(xV ))2

]
≤ τ.

2 There exists a point x ∈ V such that, conditioned on that point, the
resulting conditional distribution of x has a non-vanishing moment of
degree at most m.
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Real-Valued Concepts

Essentially these conditions allow you to bin the real-valued labels
into intervals of non-trivial length and run the same algorithm.

These conditions lead to the same characterization of efficient
learnability of MIMs.

The matching SQ lower bound is more challenging to prove since we
can have very large chi-squared divergence with N (0, I). But along
with prior work [DKRS23] that focused on the unsupervised setting
we developed tools that deal with this issue.
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Results for Well-Studied Function Classes

By applications of the general theorem we have proven new guarantees for
many well-studied function classes:

Function Class Runtime Error

Agnostic K -MLC poly(d) 2poly(K/ϵ) O(OPT) + ϵ

K -MLC with RCN poly(d) (1/ϵ)poly(K) O(OPT) + ϵ

Agnostic Intersections of K halfspaces poly(d) 2poly(K/ϵ) K Õ(OPT) + ϵ

Well-Behaved K -MIMs dO(m) 2poly(mKΓ/ϵ) τ +OPT+ ϵ

Positive Hom. & Lipschitz Functions poly(d)2poly(KL/ϵ) ϵ
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Thank you for your attention.
Are there any questions?
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