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This Talk Is Based On

® Robust Learning of Multi-index Models via lterative Subspace

Approximation [
|. Diakonikolas, G. lakovidis, D. Kane, N. Zarifis

® Algorithms and SQ Lower Bounds for Robustly Learning Real-valued
Multi-index Models [ ]
|. Diakonikolas, G. lakovidis, D. Kane, R. Lisheng
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Multi-Index Models

Definition (Multi-Index Models (MIMs))
A class of function F C {f : RY — Y} is called a class of MIMs of

dimension K, if for every f € F there exists a subspace W C RY, of
dimension at most K such that f(x) = f(x").

e Essentially each function depends on the projection onto a low
dimensional subspace W. Can be written as f(Wx).

e We assume that K < d.

V| < 0.
e Many well-studied function classes, such as neural networks,
multiclass linear classifiers, intersections of halfspaces are MIV

e We assume that the label space is finite,

classes.
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Example MIMs

H ]l(w(i) X+t > 0) argmax(w(i) - X+ t,-)
ie[K] i€[K]

Figure 1: Intersection of halfspaces and Linear Multiclass Classifiers
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Example MIMs

Figure 2: Homogeneous ReLU Network
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Setting

e We will work in the agnostic label noise setting.

* We observe samples (x. y), where x ~ D and y equals f(x)
of the samples.

e Our goal is to find a function h such that
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Setting

e We will work in the agnostic label noise setting.

* We observe samples (x, y), where x ~ D and y equals f(x)
of the samples.

e Our goal is to find a function h such that

However this is computationally hard!!
We need assumptions on the function f, the distribution D and a relaxed
error guarantee.
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Learning Goal

We will work in the agnostic label noise setting with

e Let D be a distribution over R? x ) with

e Let F be a MIM class, e.g., multiclass linear classifiers.
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Learning Goal

We will work in the agnostic label noise setting with

e Let D be a distribution over R x ) with

e Let F be a MIM class, e.g., multiclass linear classifiers.

Goal:
e Given N samples, (x(, y;) ~ D for N = poly(d) - g(e, K, ).

» Find an algorithm that runs in poly(/N) time and returns a hypothesis
h comparable with the best-in-class

: P)r D[h(x) #y]l <c(K,OPT)+ewp. 1-94,
X,y )~

c is a small function of K and OPT = infrc 7 Pr(, ,)p[ #y].
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Main Result

Theorem (Informal Main Theorem)

There exists a dimension-efficient and robust algorithm for broad family of

well-behaved MIMs. Moreover, there is a SQ lower bound demonstrating
that this algorithm is optimal wrt the dependence on the dimension.
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Multiclass Linear Classification

Theorem (Agnostically Learning L4« )

There exists an algorithm that draws N = d 2P°Y(K/€) jj d. |abeled

samples, runs in poly(N) time, and outputs a hypothesis h such that
w.h.p. err) | (h) < O(OPT) + ¢, where OPT = infrecy « errd | (f).

Intuitively, the algorithm will approximately recover the subspace W' using
moments, i.e., E[x1(y = /)|. Subsequently, it performs a brute-force
search within the recovered subspace.
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Finding a relevant direction

« If there exists a label i such that Pr[i # y| < COPT + ¢ we could just
output /.

e Otherwise, assuming that y is far from a constant, we have that each
class has a
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Finding a relevant direction

« If there exists a label i such that Pr[i # y| < COPT + ¢ we could just
output /.

e Otherwise, assuming that y is far from a constant, we have that each
class has a

non-trivial
Elx1(y = )"

No constant
approximation

Hence we have recovered one relevant direction!!
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Iterative Approximation
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Iterative Approximation
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Algorithm

8 let {1+ O

& fort=1:T

©  Form a partition S; of span(L;) into cubes.
@ Set Ly« L U{E[xL(y =1) | x € S]}ses,
© Form a partition St of span(L7) into cubes.
o

Return h a function that outputs the most frequent label for every
cube.
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Algorithm

8 letl o

& fort=1:T

©  Form a partition S; of span(L;) into cubes.
@ Set Ly« L U{E[xL(y =1) | x € S]}ses,
© Form a partition St of span(L7) into cubes.
o

Return h a function that outputs the most frequent label for every
cube.

If T is a sufficiently large polynomial of K and 1/€ and you take enough
samples to approximate the expectations accurately, then h achieves
O(OPT) + € error.
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Analysis

6D

Let [; « @
fort=1:T
Form a partition S; of span(L;) into cubes.
Set Liy1 « L U{E[xL(y = i) | x € S]}ses,
Form a partition St of span(Lt) into cubes.

Return h a function that outputs the most frequent label for every
cube.

To approximate E[x1(y = i)] accurately you need d/e? samples.

If you have € as the width of the cube and dim(span(L;)) = k; then
|S¢| = (%t The number of cubes increases uncontrollably and so does
the complexity.

We need a filtering step!!
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Filtering

e In fact we show that there is an ¢ fraction of cubes S with
w; - E[x1(y = j) | x € S] non-trivial for some i and j.

e So there is an of the cubes that have non-trivial
moments
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Filtering

# In fact we show that there is an ¢ fraction of cubes S with
w; - E[x1(y = j) | x € S] non-trivial for some i and j.

e So there is an of the cubes that have non-trivial
moments

e Therefore the matrix

U= usjug;Prix €S| us; =E[xl(y=1i)|x€S9]
S,i
has a big quadratic form for some w;.

e Consequently we can find a vector close to w in U's largest
eigenvalues.

e This reduces the number of added vectors to poly(K/e).
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General Algorithm?

What properties of the function class have we used?
0 letl 1+ O
@ fort=1:T
©  Form a partition S; of span(L;) into cubes.

© Set L;y1 + Ly UFilter {E[x1(y =) | x € S]}ses,)
1. Existence of correlating moments

© Form a partition St of span(Lt) into cubes.

© Return h a function that outputs the most frequent label for every
cube.
2. Approximability of f from cubes
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Approximability from cubes

» For real-valued functions Lipschitzness (||Vf(x)|| < L) or more
generally bounded total variation (E[||Vf(x)|]] < L) suffices.

e For discrete-valued functions under the gaussian the analogous

measure is the Gaussian Surface Area.

e It is a measure of complexity of the decision boundary.
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Well-Behaved MIMs

Definition (Well-Behaved K-MIM)

Let f: RY — ) be a K-MIM. We say that f is (m, {, 7, T)-well-behaved if
the following two conditions hold:
@ The Gaussian surface area of the decision region of f is at most I'.

@ For every joint distribution (x,y) on R x ) satisfying

Prif(x)#y] <¢

(xy)

and for every linear subspace V C RY, one of the following is true:
o Pf(x) £g(x¥)] < T
@ With non-trivial probability over x € V/, conditioned on that point, the
resulting conditional distribution of x has a non-vanishing moment of
degree at most m.
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Main Theorem

Theorem (General Algorithm)

There exists an agnostic learning algorithm for (m, , T, ")-well-behaved

MIMs that, where ( > OPT + € that, uses N = d’"2p°1y(rK|y|/E) samples,

runs in time poly(N), and outputs a hypothesis h satisfying, with
probability at least 1 — 6,

errd 1 (h) < 7+ OPT + €.
Furthermore we prove:

e That N = d™poly(I'|Y|/e)X suffices when y depends only on W.

* A matching lower bound for classes of functions that do not satisfy
the well-behaved MIM condition.
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Real-Valued Concepts

Definition (Well-Behaved K-MIM)

Let f : R? — R be a K-MIM. f is (m, ¢, 7, L, M)-well-behaved if the
following two conditions hold:

@ E[f?(x)] < M, EcononllVE()I?] < L.
@ For every joint distribution (x,y) on RYx ) satisfying

Pr(f(x) - y)*] <¢

(x.y)

and for every linear subspace V C RY, one of the following is true:

@ Pr[(f( ) — g(xv))z] < T
@ There exists a point x € V such that, conditioned on that point, the
resulting conditional distribution of x has a non-vanishing moment of

degree at most m.
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Real-Valued Concepts

» Essentially these conditions allow you to bin the real-valued labels
into intervals of non-trivial length and run the same algorithm.

* These conditions lead to the same characterization of efficient
learnability of MIMs.

e The matching SQ lower bound is more challenging to prove since we
can have very large chi-squared divergence with A/(0,1). But along
with prior work | | that focused on the unsupervised setting
we developed tools that deal with this issue.
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Results for Well-Studied Function Classes

By applications of the general theorem we have proven new guarantees for
many well-studied function classes:

Function Class Runtime Error
Agnostic K-MLC poly(d) 2P°N(K/9) | O(OPT) + ¢
K-MLC with RCN poly(d) (1/e)*°¥(K)[ O(OPT) + ¢
Agnostic Intersections of K halfspaces| poly(d)2r°¥(K/9) |K O(OPT) + ¢
Well-Behaved K-MIMs dO(m) opoly(mKT/9) [ 7 4 OPT + ¢
Positive Hom. & Lipschitz Functions | poly(d)2Po(KL/€) €
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Thank you for your attention.
Are there any questions?
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